Dr. Madhukarrao Wasnik P.W.S College Of Arts, Commerce And Science, Nagpur

Subject: Physics

B.SC – Second Year Semester IV Paper – II

UNIT - 2

Topic: Field Effect Transistor

FET (Field Effect Transistor)

Introduction

- The three terminals of the FET are known as Gate, Drain, and Source.
- It is a voltage controlled device, where the input voltage controls by the output current.
- In FET current used to flow between the drain and the source terminal. And this current can 6 be controlled by applying the voltage between the gate and the source terminal.
- So this applied voltage generate the electric field within the device and by controlling these electric field we can control the flow of current through the device.

- The bipolar junction transistor has two main disadvantage.
 - It has a low input impedance
 - It has considerable noise level
- To overcome this problem Field effect transistor (FET) is introduced because of its:
 - High input impedance
 - Low noise level than ordinary transistor
- Junction Field Effect Transistor (JFET) is a type of FET.
 - Basically, FETs are available in small sizes and they use low space on a chip.

Types of FET:

There are two types of FET:

- JFET (Junction Field Effect Transistor)
 - n-channel JFET
 - p-channel JFET
- IG-FET (Insulated Gate Field Effect Transistor)
 - MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is the type of IG-FET,
 - where a layer of SiO₂ is used as an insulating layer to insulate the gate from the channel.
 - The MOSFET can be further classified into
 - Depletion-type MOSFET (n-channel and p-channel)
 - Enhancement-Type MOSFET (n-channel and p-channel)

Junction Field Effect Transistor

- In JFET this gate terminal is provided using this PN junction. So if you see the n-type JFET, two small p-type regions are fabricated near the channel.
- This channel is made up of n-type semiconductor than it is known as nchannel JFET. And likewise if it is made up of p-type semiconductor than it is known an p-channel JFET.

Junction field effect transistor

Theory of Operation

- When gate-source voltage(V_{GS}) is applied and drain-source voltage is zero i.e. V_{DS}= 0V
 - When V_{GS} = 0V, two depletion layers & channel are formed normally.
 - When V_{GS} increase negatively i.e. 0V > V_{GS} > V_{GS}(off), depletion layers are also increased and channel will be decrease.
 - When V_{GS}=V_{GS}(off), depletion layer will touch each other and channel will totally removed. So no current can flow through the channel.

- When drain-source voltage (VDS) is applied at constant gate-source voltage (VGS):.
 - When V_{DS} increases i.e. 0V < V_{DS} < V_P, depletion layer at drain end is gradually increased and drain current also increased.
 - When VDS = VP the channel is effectively closed at drain end and it does not allow further increase of drain current. So the drain current will become constant.

Features of JFET

- JFET is a voltage controlled device i.e. input voltage (V_{GS}) control the output current (I_D).
- In JFETs, the width of a junction is used to control the effective cross-sectional area of the channel through which current conducts.
- It is always operated with Gate-Source p-n junction in reverse bias.
- Because of reverse bias it has high input impedance.
- In JFET the gate current is zero i.e. I_G=0.

I-V Characteristics

- It is the curve between drain current (ID) and drain-source voltage (VDS) for different gate-source voltage (VGS). It can be characterized as:
- For V_{GS}=0V the drain current is maximum.
- Then if V_{GS} increases Drain current I_D decreases even though V_{DS} is increased.
- When V_{GS} reaches a certain value, the drain current will be decreased to zero.
- For different V_{GS}, the I_D will become constant after pinch off voltage (V_P) though V_{DS} is increased.

Transfer Characteristics

This curve shows the value of lo for a given value of Vgs.

Fig: Transfer Characteristic Curve

In this MOSFET, the gate is made up of a metal layer and the insulated layer is made up of silicon dioxide.

MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

Classification of MOSFET

- The MOSFET can be further classified into
 - Depletion-type MOSFET (n-channel and p-channel)
 - Enhancement-Type MOSFET (n-channel and p-channel)

Depletion Type MOSFET

Enhancement Type MOSFET

IG-FET (Insulated Gate-Field Effect Transistor)

- IGFET uses an insulated layer between the gate terminal and the channel. And typically this insulated layer is formed from the oxide layer of the semiconductor.
- The name IGFET refers to the any type of FET which has an insulated gate. And the most common form of IG-FET is the MOSFET.

- So by the application of voltage if the number of charge carrier gets depleted in this channel than it is known as the depletion type MOSFET.
- If the number of charge carrier increases than it is known as the enhancement type MOSFET.

Advantage of FETs

- It is simpler to fabricate, smaller in size.
- It has longer life and higher efficiency.
- It has high input impedance.
- It has negative temperature coefficient of resistance.
- It has high power gain.

Disadvantage of FETs

- JFET has low voltage gain.
- They are more costly than junction transistor.
- It has lower switching time compare to BJT.
- · Special handling is required during installation.

Applications of FETs

- Amplifier
- Oscillator
- Analog Switch
- Integrated Circuits
- Buffer Amplifiers